Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen

Richard Q. Long and Ralph T. Yang*

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA. E-mail: yang@umich.edu

Received (in Cambridge, UK) 20th June 2000, Accepted 21st July 2000

Fe-ZSM-5 showed the best catalytic performance (nearly 100% N_2 yield) and resistance to water vapor for selective catalytic oxidation of NH₃ to N₂ at a high gas hourly space velocity (2.3 \times 10⁵ h^{-1}) among transition-metal (Cr, Mn, Fe, Co, Ni and Cu) ion-exchanged ZSM-5 catalysts.

The removal of ammonia from waste streams is becoming an increasingly important issue due to environmental reasons. Many chemical processes use reactants containing ammonia or produce ammonia as a by-product. They are all plagued with the ammonia slip problem. Selective catalytic oxidation (SCO) of ammonia to nitrogen is potentially an ideal technology for removing ammonia from oxygen-containing waste gases and consequently it is of increasing interest in recent years.^{1–12} The SCO process could also be applied to the selective catalytic reduction (SCR) of NO by ammonia where ammonia slip has been a serious problem,² as well as to the combustion of biomass-derived gases for removing the NH₃ impurity.³⁻⁵

Early results¹ on ammonia oxidation showed that noble metals (e.g. Pt and Pd) were active for oxidation of NH₃ to NO and N2O, while transition metal oxides such as V2O5 could selectively convert NH₃ to N₂, but were much less active than the noble metals. Li and Armor² reported that Pt, Rh and Pd exchanged to ZSM-5 or supported on Al₂O₃ showed good SCO performance in a wet stream, which were more active than V₂O₅/TiO₂ and Co-ZSM-5. More recently, Burch and Southward found that 12-tungstophosphoric acid⁴ and Ni, Fe and Mn oxides supported on γ -Al₂O₃⁵ were active for the reaction. A number of other catalysts were also investigated, such as CuMoO₄,⁶ CuO/Al₂O₃,^{7,8} Cu, Co and Ni oxides doped on SiO₂,⁹ Cu–Mn/TiO₂,¹⁰ V₂O₅/TiO₂, CuO/TiO₂ and Cu-ZSM-5,¹¹ as well as V₂O₅, MoO₃ and WO₃ on various supports.¹² They all exhited activities for N2 formation under different conditions. However, the aforementioned work was normally performed at low space velocities ($<10^5$ h⁻¹) and in the absence of H₂O or SO₂. Here, we report a series of transition metal (i.e. Cr, Mn, Fe, Co, Ni and Cu) ion-exchanged ZSM-5 samples that have excellent catalytic performance (both activity and product selectivity) for the SCO reaction at a high space velocity. The effects of H₂O and/or SO₂ are also studied.

Transition metal ion-exchanged ZSM-5 samples were prepared using the conventional ion exchange procedure. NH₄-ZSM-5 (Si/Al \approx 10) was obtained from Alsi-Penta Zeolithe Gmbh (Germany). In each experiment, 2 g NH₄-ZSM-5 was added to 200 ml of 0.05 M Cr(MeCO₂)₃, Mn(MeCO₂)₂, FeCl₂, Co(MeCO₂)₂, Ni(MeCO₂)₂ or Cu(MeCO₂)₂ solution with constant stirring at room temperature. After 24 h, the particles were filtered off and washed with deionized water. Pd-ZSM-5 was prepared by exchanging NH₄-ZSM-5 with 100 ml 0.015 M $Pd(NO_3)_2$ solution at room temperature for 24 h.² The obtained samples were first dried at 120 °C in air for 12 h, then calcined at 500 °C for 6 h. H-ZSM-5 was prepared by calcining $\rm NH_{4^-}$ ZSM-5 at 500 °C for 3 h. The metal contents measured by neutron activation analysis in the Cr, Mn, Fe, Co, Ni, Cu and Pd ion-exchanged ZSM-5 samples were 0,13, 1.03, 1.59, 1.24, 0.85, 4.35 and 5.51% by weight, respectively.

The SCO performance tests were carried out in a fixed-bed quartz reactor described elsewhere.¹³ The typical reaction

conditions were as follows: 0.1 g (0.13 ml) catalyst, 1000 ppm NH₃, 2% O₂, 500 ppm SO₂ (when used), 4% water vapor (when used) and balance He. The total flow rate was 500 ml min-1 (ambient conditions) and thus a high gas hourly space velocity (GHSV = $2.3 \times 10^5 \text{ h}^{-1}$) was obtained. Premixed gases (1.05% NH₃ in He and 0.99% SO₂ in He) were supplied by Matheson. Water vapor was generated by passing He through a heated gas-wash bottle containing deionized water. The tubings of the reactor system were heat traced with heating tapes to prevent formation and deposition of ammonium sulfate/ hydrogensulfate. A magnetic deflection type mass spectrometer (AERO VAC™, Vacuum Technology Inc.) was used to monitor continuously the effluent gas from the reactor. The concentrations of unreacted NH₃ and formed NO_x (NO + NO₂) were also continually monitored by a chemiluminescent NO/NOx analyzer (Thermo Electro Corporation, Model 10), where a high temperature converter oxidized NH_3 to NO_x by the reaction $NH_3 + O_2 \rightarrow NO_x + H_2O_2$

The catalytic performances of different ion-exchanged ZSM-5 catalysts are summarized in Table 1. H-ZSM-5 showed a good activity for NH₃ oxidation at 350–450 °C, with 62–74% selectivity for N₂ and 23–37% selectivity for NO. N₂ selectivity increased slightly with temperature. It is noted that a moderate

Table 1 Catalytic performance of ion-exchanged ZSM-5 catalysts^a

		NUL	Selectivity (%)			
Catalyst	T/°C	(%)	N ₂	N ₂ O	NO	N ₂ yield (%)
Empty tube	350	23	51	1	48	12
1.5	400	37	43	2	55	16
	450	55	35	1	64	19
H-ZSM-5	350	52	74	3	23	38
	400	80	73	2	25	58
	450	88	62	1	37	55
Cr-ZSM-5	350	72	75	2	23	54
	400	83	77	2	21	64
	450	96	94	1	5	90
Mn-ZSM-5	350	68	77	3	20	52
	400	81	47	4	49	38
	450	82	40	3	57	33
Fe-ZSM-5	350	63	92	0	8	58
	400	95	98	0	2	93
	450	99	100	0	0	99
Co-ZSM-5	350	58	73	4	23	42
	400	61	59	1	40	36
	450	70	49	0	51	34
Ni-ZSM-5	350	39	69	4	27	27
	400	51	62	2	36	32
	450	63	60	0	40	38
Cu-ZSM-5	350	48	95	2	3	46
	400	95	98	1	1	93
	450	97	100	0	0	97
Pd-ZSM-5	300	80	73	19	8	58
	350	92	73	17	10	67
	400	90	63	18	19	57
^{<i>a</i>} Reaction conditions: 0.1 g catalyst, $[NH_3] = 1000$ ppm, $[O_2] = 2\%$, He						

^{*a*} Reaction conditions: 0.1 g catalyst, $[NH_3] = 1000$ ppm, $[O_2] = 2\%$, He = balance, total flow rate = 500 ml min⁻¹ and GHSV = 2.3×10^5 h⁻¹.

Fig. 1 Effect of H₂O and SO₂ on NH₃ conversion for Fe-ZSM-5. *Reaction conditions*: 0.1 g catalyst, [NH₃] = 1000 ppm, $[O_2] = 2\%$, 500 ppm SO₂ (when used), 4% water vapor (when used), He = balance, total flow rate = 500 ml min⁻¹ and GHSV = 2.3×10^5 h⁻¹.

activity was also observed on the empty reactor under the same conditions, resulting from homogeneous NH₃ oxidation, but the major product was NO (Table 1). When transition metal ions were exchanged to ZSM-5, Cr-ZSM-5, Fe-ZSM-5 and Cu-ZSM-5 showed very high activities for oxidation of NH₃ to N₂. Only small amounts of N₂O and NO were produced by Fe-ZSM-5 and Cu-ZSM-5 catalysts. Both NH₃ oxidation activity and N₂ selectivity increased with temperature. Near 100% N₂ vield was obtained on Fe-ZSM-5 at 450 °C. In comparison, a lower activity was observed on Mn-ZSM-5, Co-ZSM-5 and Ni-ZSM-5, with large amounts of NO formation. These results suggest that metal cations in the ZSM-5 play an important role in the SCO of NH₃ to N₂. Pd-ZSM-5, a good SCO catalyst reported by Li and Armor,² also showed high NH₃ conversions under our reaction conditions, *i.e.* a higher space velocity $(2.3 \times$ 10^5 h⁻¹ vs. 4.6×10^4 h⁻¹ in ref. 2), but the selectivity for N₂ was lower than that on Fe-ZSM-5 and Cu-ZSM-5. The maximum N₂ yield on the above catalysts increased in the sequence of Co-ZSM-5 ≈ Ni-ZSM-5 < Mn-ZSM-5 < H-ZSM-5 < Pd-ZSM-5 < Cr-ZSM-5 < Cu-ZSM-5 < Fe-ZSM-5. This rank order is similar to the previous results obtained on the metal ion-exchanged Y zeolites, except for Fe.¹ The nitrogen balance was above 95% in this work.

It is known that the waste streams usually contain water vapor and small amounts of SO2. We further studied the effects of H₂O and SO₂ on the catalytic performance of Cr-ZSM-5, Fe-ZSM-5 and Cu-ZSM-5. For Cr-ZSM-5, when 500 ppm SO₂ and/or 4% H₂O were added to the reactants, NH₃ conversion decreased significantly. Only 50% NH₃ conversion was obtained at 450 °C in the presence of both H_2O and SO_2 . Comparatively, NH₃ conversion was decreased only slightly by H_2O on Fe-ZSM-5 (Fig. 1). SO₂ and $H_2O + SO_2$ decreased NH_3 conversion at 350–450 °C, but the decrease was less significant at high temperatures. For example, 94% NH₃ conversion could be obtained at 500 °C. H₂O and SO₂ also inhibited NH₃ conversion over Cu-ZSM-5. Only 65% NH₃ conversion was observed at 450 °C in the presence of H₂O and SO₂. Increasing the temperature to 500 °C resulted in 73% NH₃ conversion. N₂ was the dominant product for NH3 oxidation in the presence of H₂O and/or SO₂.

The above results indicate that Fe, Cu and Cr ion-exchanged ZSM-5 are very active for selective catalytic oxidation of NH₃ to N₂. Our previous results showed that, although iron cations were exchanged with NH₄-ZSM-5 as Fe²⁺, most iron cations in the Fe-ZSM-5 are present as Fe³⁺ ions after calcination, leaving only a small amount of Fe^{2+,14} An equilibration between Fe²⁺ and Fe³⁺ exists in the Fe-ZSM-5. It has also been reported that both Cu⁺ and Cu²⁺ ions are present in Cu-ZSM-5¹⁵ and the ratio of Cu⁺/Cu²⁺ depends on the Cu content and the preparation procedure. The variable valence of metal cations in these two catalysts may be beneficial to oxygen adsorption and activation. Therefore, a high activity for the SCO reaction is expected. Relatively lower activities were observed on Mn, Co, and Ni ion-exchanged ZSM-5. This may be attributed to their stabilized valence in zeolites.¹ which is not favorable for oxygen activation. H₂O and SO₂ have strong negative effects on NH₃ conversion for Cr-ZSM-5 and Cu-ZSM-5, whereas H₂O decreased NH₃ conversion slightly for Fe-ZSM-5. Although SO₂ decreased NH₃ conversion at low temperatures for Fe-ZSM-5, a high NH₃ conversion (94%) was obtained at 500 °C in the presence of H₂O and SO₂ at such a high space velocity $(\text{GHSV} = 2.3 \times 10^5 \text{ h}^{-1})$. Fe-ZSM-5 may be suitable as a practical catalyst for oxidation of NH₃ to N₂ in a wet stream. In addition, the effects of the ammonia concentration on activity and other Fe-exchanged zeolites were also studied for the SCO reaction. The initial results showed that NH₃ conversion over Fe-ZSM-5 increased with a decrease in NH₃ concentration. For example, 99% NH₃ conversion was obtained at 350 °C when the NH₃ concentration was decreased to 10 ppm (vs. 63% at 1000 ppm). Also, the SCO performance was found to follow the trend $Fe-ZSM-5 \approx Fe-mordenite \approx Fe-clinoptilolite > Fe-Y \approx Fe$ beta > Fe-ferrierite \approx Fe-chabazite. More details will be presented in a future paper. Moreover, Fe-ZSM-5 is also a good catalyst for the selective catalytic reduction (SCR) of NO with ammonia.13 In the SCR reaction, the reactions of NH₃ with NO/ O₂ and that with O₂ are known as two competitive reactions. A decrease in reactivity of NH₃ with O_2 by $H_2O + SO_2$ will be beneficial to NO reduction, which has indeed been observed in our previous results that H2O + SO2 increased the SCR activity at high temperatures on Fe-ZSM-5.13

We gratefully acknowledge Dr Ramsay Chang of EPRI for discussions.

Notes and references

- 1 N. I. II'chenko, Russ. Chem. Rev., 1976, 45, 1119.
- 2 Y. Li and J. N. Armor, Appl. Catal. B, 1997, 13, 131.
- 3 E. M. Johansson and S. G. Järås, Catal. Today, 1999, 47, 359.
- 4 R. Burch and B. W. L. Southward, Chem. Commun., 1999, 1475.
- 5 M. Amblard, R. Burch and B. W. L. Southward, *Appl. Catal. B*, 1999, **22**, L59.
- 6 H. S. Gandhi and M. Shelef, J. Catal., 1975, 40, 312.
- 7 L. Gang, J. van Grondelle, B. G. Anderson and R. A. van Santen, J. Catal., 1999, 186, 100.
- 8 T. Curtin, F. O'Regan, C. Deconinck, N. Knuttle and B. K. Hodnett, *Catal. Today*, 2000, 55, 189.
- 9 F. Dannevang, US Pat., 5 587 134, 1996.
- 10 A. Wollner and F. Lange, Appl. Catal. A, 1993, 94, 181.
- 11 N. N. Sazonova, A. V. Simakov, T. A. Nikoro, G. B. Barannik, V. F. Lyakhova, V. I. Zheivot, Z. R. Ismagilov and H. Veringa, *React. Kinet. Catal. Lett.*, 1996, **57**, 71.
- 12 M. de Boer, H. M. Huisman, R. J. M. Mos, R. G. Leliveld, A. J. Vandillen and J. W. Geus, *Catal. Today*, 1993, **17**, 189.
- 13 R. Q. Long and R. T. Yang, J. Catal., 1999, 188, 332.
- 14 R. Q. Long and R. T. Yang, J. Catal., in press.
- 15 C. Torre-Abreu, M. F. Ribeiro, C. Henriques and G. Delahay, Appl. Catal. B, 1997, 12, 249.